

Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600
April 12, 1994

Interfacing the VIC068A to the MC68020

This application note explains some of the features of the Cy-
press VIC068A and provides the first-time VIC068A user with
simple implementations of these features. The VIC068A of-
fers the most highly integrated VMEbus interface available
today. It reduces the number of parts needed and saves board
space. The emphasis in this application note is on interfacing
the VIC068A as VMEbus A24/A16 D16/D08(E0) mas-
ter/slave to the Motorola 68020.

Reset Operation
The VIC068A performs three distinct reset operations:

• Internal reset, activated by the IRESET pin, which initializ-
es most of the internal registers

• System reset, essentially the same as IRESET, but is ac-
tivated by writing ($F0) to the system reset register, or by
asserting IRESET when the VIC068A is the VMEbus con-
troller (SCON pin asserted)

• Global reset initializes all the VIC068A registers

After a reset, the 680X0 processor reads its initial stack point-
er (SSP) and program counter (PC) from addresses $0
through $7. One way to handle this is to remap the boot-up
ROMs to the low addresses for the first few cycles of the pro-
cessor.

Figure 1 shows a circuit you can use to do this. The circuit
uses a serial-in/parallel-out shift register (the 74HC164) to
generate the MAP signal. This active-Low signal can be used
with address-decode logic to force boot ROM access to the
lower addresses during initial power up. Asserting the
74HC164 CLEAR pin drives all the parallel outputs Low,
which asserts the selected MAP signal. With the two serial
inputs tied High, each Low-to-High transition of the 68020 AS
clocks the High through the shift register and out each of the
parallel outputs. By picking the proper output for the MAP
signal, you can decode from 1 to 8 of the initial processor
cycles. You can use the MAP signals on memory configura-
tions that are 8, 16, or 32 bits wide by using the QH, QD, or
QB outputs, respectively.

Using the Processor RESET Instruction

The OR gate in Figure 1 ensures that the 74HC164 is cleared
only when HALT and RESET are both asserted. This allows
the use of the 68020 RESET instruction without inadvertently
reasserting MAP. An alternative to this approach is to use two
small-signal diodes (1N4148) and a pull-down resistor in
place of the OR gate. This change reduces the design’s parts
count by eliminating the 74HC32.

A ROM remapping circuit must be used whether the RESET
instruction is issued or not because of the way the VIC068A
arbitrates local bus contention between the 68020 and the
VMEbus. Contention occurs when both master and slave op-
erations are requested concurrently (MWB asserted and
SLSEL0, SLSEL1, or IFCSEL asserted). The VIC068A indi-
cates this contention by asserting DEDLK. You can deal with
the condition by setting bit 4 of the VIC068’s interface config-
uration register ($AF) to assert HALT along with LBERR when
DEDLK occurs (68020 bus retry sequence). The VIC06 then
waits for the 68020 to deassert the MWB input. Once this
happens, the VIC068A releases LBERR but continues to as-
sert HALT to keep the 68020 off the local bus. The VIC068A
then allows the slave operation to complete and deasserts
HALT. The 68020 can now retry the contested bus cycle.

Internal Reset

At first glance, the IRESET might seem the logical choice for
implementing the power-on reset. Because the IRESET input
has some built-in hysteresis, a simple RC circuit would be
appropriate for applying the power-on signal.

IRESET does not initialize the local bus timing register nor
any of the slave select registers, however. Additionally, the
VIC068A powers-up with the DRAM refresh option enabled
(bit 4 of the arbiter/requester configuration register $B3 High).
This condition is acceptable if you are using DRAM but ad-
versely affects the external reset circuit in Figure 1. Specifi-
cally, for the first DRAM refresh cycle, the VIC068A deasserts
RESET but maintains HALT in the active (Low) state and tog-
gles AS. This action causes shift operations in the 74HC164.

TO VIC/68020 AS

VCC

A
1

QA
3

B
2

QB
4

QC
5

QD
6

QE
10

CLK
8

QF
11

QG
12

CLR
9

QH
13

74HC164

MAP FOR 32-BIT MEMORY

MAP FOR 16-BIT MEMORY

MAP FOR 8-BIT MEMORY

74HC32

TO VIC/68020 RESET

TO VIC/68020 HALT

Figure 1. ROM Remapping Circuit

Interfacing the VIC068A to the MC68020

2

You can activate DRAM refresh after reset by writing a 1 to bit
4 of the arbiter/requester configuration register ($B3).

System Reset

The assertion of SYSRESET on the VMEbus typically acti-
vates system reset, but only when a global reset is not taking
place. When the VIC068A is configured as the system con-
troller (SCON pin asserted), it drives the SYSRESET pin for
the required 200 ms during an internal or global reset.

Global Reset

The global reset is the most useful for power-up purposes
because it places all the VIC068A registers in a known state.
You initiate a global reset by asserting IPL(0) concurrent with
or just after asserting IRESET. These reset signals should not
be asserted until the VCC power source has stabilized at 5
volts. Because IPL(0) is also one of the encoded interrupt
lines for the 68020, you must assert this signal with an
open-collector or three-state device.

In using global reset, bear in mind that when the VIC068A
powers-up it ignores the VMEbus SYSRESET. The VIC068A
releases HALT and RESET after the 200-ms time out even if
the current VMEbus master asserts SYSRESET past this re-
quired minimum time. This automatic release is a useful fea-
ture because it eliminates reliance on the system controller to
release SYSRESET to start the power-up sequence. Refer to
the VIC068A/VAC068A User’s Guide for more information on
global reset.

The VIC068A generates a LBERR if you try to access the
VMEbus or any of the VIC068A registers before SYSRESET
is deasserted. One solution to this problem is to structure the
software so that the VIC068A registers are set up as late as
possible in the power-up sequence. You can also temporarily
point the 68020 BERR exception vector to an address con-
taining an RTE instruction and let the 68020 cycle in a
BERR/RTE loop until SYSRESET is deasserted. The latter
approach provides an opportunity to be the first board in a
system to request VMEbus mastership.

Connecting the Bus Lines
Figure 2 shows the standard buffer configuration for an
A24/D16 VMEbus connection. This design also supports A16
and D08(E0) operation.

The D16/D08(E0) Data Bus

Connect the VIC068A to the 68020 as you would any 16-bit
peripheral device. The 74FCT543 data buffer connects be-
tween the 68020 data bus’s upper byte (D31–24) and the
VMEbus D15 - 8 data lines. The lower byte (LD7–LD0) is
buffered through the VIC068A to the VMEbus low byte
(D7–D0). Several control signals connect directly from the
VIC068A to the 74FCT543: DENO (data enable out) to OEAB
(Output enable A-to-B), LWDENIN (lower word data enable)
to OEBA (Output enable B-to-A), LEDO (latch enable data
out) to LEAB (Latch enable A-to-B), and LEDI (latch enable
data in) to LEBA (latch enable B-to-A).

The Address Bus

The A24/A16 configuration requires the use of two more
74FCT543 devices to buffer and control the VMEbus A23
through A8 signals. The 74FCT543 LEAB, LEBA, and OEBA
inputs connect directly to the VIC068A LADO (latch address
out control), LADI (latch address in control), and ABEN (en-
able address out control) outputs, respectively. The output of

the VIC068A LAEN (local-address enable control) must be
connected to the 74FCT543 OEBA input through an inverter
because LAEN is an active-High output and OEBA is an ac-
tive-Low input.

Connecting the DSACK Lines

During the normal local bus operation, the 68020’s slave de-
vices (i.e., memory, UART, parallel port) must tell the proces-
sor the size of their data bus. This is done by asserting the
DSACK1 inputs, which tells the 68020 that the port is a 16-bit
device. Asserting DSACK0 instead indicates that the port is
an 8-bit device. Asserting both DSACK1 and DSACK0 indi-
cates that the port is 32 bits wide. To configure the VIC068A
as a 16-bit port, simply connect the 68020 DSACK1 to the
VIC068A DSACK1.

So long as there you have no requirement for VMEbus access
to 8-bit devices on the local bus, you do not need to do any-
thing with the VIC068A DSACK0 pin except terminate it (pull
it High).

When you do need to access 8-bit devices, a small problem
arises with the way the VIC068A acknowledges register ac-
cesses and interrupt-acknowledge cycles. During these cy-
cles, the VIC068A always asserts both DSACK1 and
DSACK0, whether the WORD input is asserted or not. And in
VMEbus master cycles, when talking to an 8-bit device on the
VMEbus, the VIC068A responds with DASCK0 to acknowl-
edge the 8-bit transfer completion.

The solution to the DSACK0 problem is simple but can be
complicated to implement: You must break the DASCK0 con-
nection between the VIC068A and the 68020 during interrupt
acknowledge or VIC068A register access (CS) cycles. The
circuit needed to do this is a bidirectional, open-collector buff-
er between the VIC068A and 68020. The buffer should be
inactive in both directions only when the VIC068A FCIACK or
CS inputs are asserted. In Figure 3’s PAL equations, the
DSACK0_020 and VIC068A DSACK0 equation illustrates
how to handle the DSACK0 connection.

Master Operation
VMEbus master operation with the VIC068A is easily accom-
plished with the use of the MWB (module-wants-bus) input.
The VMEbus can be requested at any level (0–3). The VME-
bus can also be dynamically changed via the arbiter/request-
er configuration register ($B3), which eliminates the need for
hardware jumpers. All VMEbus release modes are supported
through the release control register ($D3). Support for write
posting means that the local processor can write to the VME-
bus without having to wait for the current bus master to re-
lease the bus or for the arbitration logic to assert the correct
BGIN 9 (bus grant in) line. The VIC068A takes cares of this
overhead for the local processor, improving system through-
put.

To request VMEbus mastership, the 68020 asserts the MWB
input. You can think of MWB as a VMEbus chip select. When
interfacing to the VMEbus as an A24 or A16 device, you can
have access to the whole VMEbus address space by decod-
ing a 32-Mbyte area of the 68020 address space for VMEbus
operations. The ASIZ1–0 pins tell the VIC068A whether the
current cycles represent an A32, A24, or A16 operation. You
can use the upper 16-Mbyte address space (A24 High) for
VMEbus A23 operation and the lower half (A24 Low) for VME-
bus A16 operation by following three steps: decode A31
through A25 to generate MWB, tie the ASIZ1 input High, and

Interfacing the VIC068A to the MC68020

3

connect the 68020 A24 address line to the VIC068’s ASIZ0
input. Figure 3 demonstrates this way of decoding MWB.

When the VIC068A recognizes a valid slave access, the de-
vice asserts LBR (68020 BR input) and waits for LBG asser-
tion (68020 BG output). Once the VIC068A receives LBG, the
device becomes the local bus master at the conclusion of the
current cycle and completes the requested VMEbus slave op-
eration. If the VIC068A is the only DMA device on the local
bus, there is no need to generate BGACK (bus grant acknowl-
edge) for the 68020. But if any other devices are capable of
local bus mastership, you have to provide the arbitration logic
and the BGACK signal for the 68020. Keep in mind, too, that
other DMA devices must be able to recognize and deal ap-
propriately with the 68020 bus-cycle entry operation (BERR
and HALT asserted).

Slave Operation

The VIC068A can provide full VMEbus slave operation by du-
al-porting local memory with little or no 68020 overhead. The
normal slave access operation starts by providing SLSEL0 or
SLSEL1 through VMEbus address decoding. The circuits in
Figure 2 and Figure 3 use a 22V10 PAL for this purpose. Al-
ways qualify VMEbus address decoding with the AS and/or
DS1–0.

Decoding SLSEL0, SLSEL1, and IFCSEL

Figure 3 illustrates a typical PAL specification that you can
use to provide address decoding for SLSEL0, SLSEL1, and
IFCSEL. The VIC068A uses all the address modifier lines
(AM5–0) to qualify the access mode. Address decoding can
ignore these inputs. The VIC068A then decides if the access

SYSCLK
BG3IN*
BG2IN*
BG1IN*
BG0IN*
BG3OUT*
BG2OUT*
BG1OUT*
BG0OUT*

P1–B10
P1–A10

P1–B8
P1–B6
P1–B4
P1–B11
P1–B9
P1–B7
P1–B5

VCC

1

1
4

2

1
3

3

1
2

4

1
1

5

1
0

6

9

7

8

R–PACK7

VCC
!DSACK0

1

1
4

2

1
3

3

1
2

4

1
1

5

1
0

6

9

7

8
4.7K

SCONC13
IRESETB14
RESETC10
ASIZ1F1
ASIZ0G1
PASA10
DSC9
DSACK1B9
DSACK0A11
LBERRB10
HALTA12
R/WB11
FC2A13
FC1C11
RMCB12
SIZ1A14
SIZ0B13
LBRC12
LBGA15

IPL2B1
IPL1C2
IPL0D3
LIRQ7G3
LIRQ6G2
LIRQ5E1
LIRQ4F2
LIRQ3F3
LIRQ2D1
LIRQ1E2
LIACK0C1
CLK64MD13

BLTB2
DEDLKC3
SLSEL1H1
SLSEL0J3
ICFSELH2

CSA9
FCIACKK1
MWBJ2
LA7A5
LA6C6
LA5B6
LA4B7
LA3A6
LA2A7
LA1A8
LA0B8

LD7C4
LD6A2
LD5B3
LD4C5
LD3B4
LD2A3
LD1A4
LD0B5

WORDJ1
L
A
E
N

E3

L
A
D
O

C1
4

L
A
D
I

E1
3

L
E
D
O

D1
5

L
E
D
I

D1
4

D
D
I
R

E1
4

U
W
D
E
N
I
N

E1
5

S
W
D
E
N

F1
5

L
W
D
E
N
I
N

F1
4

D
E
N
O

G1
4

I
S
O
B
E

G1
5

A
B
E
N

B1
5

SYSCLK F13

BG3IN N14
BG2IN M13
BG1IN P14
BG0IN N13

BG3OUT M15
BG2OUT N15
BG1OUT L13
BG0OUT M14

BR3 P13
BR2 N11
BR1 P12
BR0 R12

BBSY N12
BCLR R14
BERR N10

IRQ7 R2
IRQ6 P3
IRQ5 N4
IRQ4 R1
IRQ3 P2
IRQ2 N3
IRQ1 M3
IACK P6

IACKIN N6
IACKOUT R4

AS P7
AM5 R10
AM4 R9
AM3 R8
AM2 P8
AM1 R7
AM0 R6

DS1 P11
DS0 R11

DTACK R5
WRITE P10
LWORD P9

SYSFAIL N5
ACFAIL R3

SYSRESET P5

A07 N2
A06 L3
A05 M2
A04 M1
A03 L2
A02 L1
A01 K2

D07 H15
D06 H14
D05 J15
D04 K15
D03 J14
D02 L15
D01 K14
D00 K13

VIC068 BR3*
BR2*
BR1*
BR0*

BBSY*
BCLR*
BERR*
IRQ7*
IRQ6*
IRQ5*
IRQ4*
IRQ3*
IRQ2*
IRQ1*
IACK*

IACKIN*
IACKOUT*

AS*
AM5

P1–B15
P1–B14
P1–B13
P1–B12
P1–B1
P1–B2
P1–C11
P1–B24
P1–B25
P1–B26
P1–B27
P1–B28
P1–B29
P1–B30
P1–A20
P1–A21
P1–A22
P1–A18
P1–C14

CONTROL
VME

BUS

AM4
AM3
AM2
AM1
AM0

DS1*
DS0*

DTACK*
WRITE*
LWORD*

SYSFAIL*
ACFAIL*

SYSRESET*

P1–A23
P1–B19
P1–B18
P1–B17
P1–B16
P1–A12
P1–A13
P1–A16
P1–A14
P1–C13
P1–C10
P1–B3
P1–C12

!LIRQ6

!LIRQ4
!LIRQ3

!LIRQ1

CLK64M

AM2

!BLT

A23
A22
A21
A20
A19
A18
A17
A16
A15
A14
A13

!AS I1/CLK1
I22
I33
I44
I55
I66
I77
I88
I99
I1010
I1111
I1213

O1 23
O2 22
O3 21
O4 20
O5 19
O6 18
O7 17
O8 16
O9 15

O10 14

22V10

A12
A11
A10
A9
A8

AM2
!SLSEL1
!SLSEL0
!ICFSEL

LD23
LD22
LD21

A23
A22
A21
A20
A19
A18
A17
A16
A15
A14
A13
A12
A11
A10
A9
A8
A7
A6

P1–C15
P1–C16
P1–C17
P1–C18
P1–C19
P1–C20
P1–C21
P1–C22
P1–C23
P1–C24
P1–C25
P1–C26
P1–C27
P1–C28
P1–C29
P1–C30
P1–A24
P1–A25

VME
DATA
BUS

A5
A4
A3
A2
A1

P1–A26
P1–A27
P1–A28
P1–A29
P1–A30

LD20
LD19
LD18
LD17
LD16

GND

CONTROL(S)

LAEN

LA15
LA14
LA13
LA12
LA11
LA10
LA9
LA8

!OEBA

1

2

74AC14
A15
A14
A13
A12
A11
A10
A9
A8

A03
A14
A25
A36
A47
A58
A69
A710

B0 22
B1 21
B2 20
B3 19
B4 18
B5 17
B6 16
B7 15

OEAB13
LEAB14
CEAB11
OEBA2
LEBA1
CEBA23

74FCT543

LA23
LA22
LA21
LA20
LA19
LA18
LA17
LA16

A23
A22
A21
A20
A19
A18
A17
A16

A03
A14
A25
A36
A47
A58
A69
A710

B0 22
B1 21
B2 20
B3 19
B4 18
B5 17
B6 16
B7 15

OEAB13
LEAB14
CEAB11
OEBA2
LEBA1
CEBA23

74FCT543

LD31
LD30
LD29
LD28
LD27
LD26
LD25
LD24

D15
D14
D13
D12
D11
D10
D9
D8

A03
A14
A25
A36
A47
A58
A69
A710

B0 22
B1 21
B2 20
B3 19
B4 18
B5 17
B6 16
B7 15

OEAB13
LEAB14
CEAB11
OEBA2
LEBA1
CEBA23

74FCT543

D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0

P1–C8
P1–C7
P1–C6
P1–C5
P1–C4
P1–C3
P1–C2
P1–C1
P1–A8
P1–A7
P1–A6
P1–A5
P1–A4
P1–A3
P1–A2
P1–A1

D15
D14

ADDRESS
VME

BUS

GNDGND
GND

LOCAL DATA

LOCAL ADDRESS

Figure 2. Address and Data Bus Connections

Interfacing the VIC068A to the MC68020

4

module_CYCLE_DECODE;
Cycle_decode device 'PV22V10';
VCC,GND

pin 24,12;

”inputs (15)
A31,A30,A29,A28,A27,A26,A25,A19 pin 1,2,3,4,5,6,7,8;
SLSEL1, SLSEL0 pin 9,10;
FC2,FC1,FC0,AS,LBG pin 13,14,15,16,17 ”for FCIACK and VIC_Cycle output

”outputs (6)
VIC_DSACK0,DSACK0_020 pin 18,19; ”To VIC DSACK0 and local system DASCK0

VIC_CYCLE pin 20; ”current bus cycle is VMEbus
FCIACK pin 21; ”Interrupt Acknowledge Cycle
PRE_MWB,MWB pin 22,23; ”VIC module-wants-bus (with and without AS)

”output type declarations
VIC_CYCLE,PRE_MWB,MWB istype 'com';
FCIACK,VIC_DSACK0,DSACK0_020 istype 'com';
VIC_CYCLE.OE,FCIACK.OE istype 'com';
PRE_MWB.OE,MWB.OE istype 'com';
VIC_DSACK0.OE,DSACK0_020.OE istype 'com';

equations in CYCLE_DECODE
”Enable ALL outputs except DSACK's

VIC_CYCLE.OE =1;
PRE_MWB.OE =1;
MWB.OE =1;
FCIACK.OE =1;

”This signal tells everybody that the VIC068A is controlling the current bus cycle
!VIC_CYCLE<T>=!LBG & AS<T><T><T><T>”signal is asserted while AS is still high

#!VIC_CYCLE & !LBG &!AS ”maintain signal through entire cycle

”Interrupt acknowledge cycle (68020 to VIC). Use VIC_CYCLE to insure this is not a VMEbus
master cycle

!FCIACK = A31 & A30 & A29 & A28 & A27 & A26 & A25 & A19 & FC2 & FC1 & FC0 & !AS &
VIC_CYCLE;

”VME A24 access is at addresses $04000000 - $04FFFFFF. A16 access is at addresses $0500000 -
$05FFFFFF (ASIZ0 is tied to LA24)

!MWB = !A31 & !A30 & !A29 & !A28 & !A27 & A26 & !A25 & VIC_CYCLE &!(FC2 & FC1 & FC0);

”This is the same signal as MWB but the AS input is removed to provide an early VMEbus master
cycle indication input to other PLDS

!PRE_MWB = !A31 & !A30 & !A29 & !A28 & !A27 & A26 & !A25 & VIC_CYCLE &!(FC2 & FC1 & FC0);

”This signal is connected directly to the VIC DSACK0. It generates the VIC DSACK0 for VMEbus
slave accesses to 8 bit device

!VIC_DSACK0 = !VIC_CYCLE & !DSACK0_020;

”This enables VIC_DSACK0 only when VIC is the local bus master (slave accesses)
VIC_DSACK0.OE = !VIC_CYCLE & (!SLSEL0 # !SLSEL1);

”This signal is connected to the 68020 DSACK). It generates the 68020 DSACK0 for VMEbus mas-
ter accesses to 8 bit devices

!DSACK0_020 = !MWB & VIC_CYCLE & !VIC_DSACK0;

”This enables the 68020 DSACK0 only when the VIC is the VMEbus master
DSACK0_020.020 = !MWB & VIC_CYCLE;
end_CYCLE_DECODE

Figure 3. ABEL Equations for PALC22V10 Cycle Decoding

Interfacing the VIC068A to the MC68020

© Cypress Semiconductor Corporation, 1994. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

mode is legal and completes the cycle or generates the VME-
bus BERR signal, depending on the value programmed in the
slave select registers. You can also qualify the select outputs
with the address modifiers and let the initiating device
time-out if the access is not legal.

The IFCSEL input gives the VMEbus access to some of the
VIC068A control registers and the interprocessor communi-
cation registers. These registers are available only through an
A16 privileged-mode access.

The PAL specification in Figure 3 configures SLSEL0 to du-
al-port a 4-Kbyte (minus 256 bytes) space of local RAM as an
A16 non-privileged access input and decodes IFCSEL in the
SLSEL0 area’s upper 256 bytes. You can use this 256-byte
space for mailbox communication between boards in a
multi-master system.

SLSEL1 is decoded as an A24 supervisory-only access and
provides full dual-porting of the 68020 board’s E2PROM pro-
gram memory. This allows the VMEbus system controller to
put the system in a reset and hold state by asserting bit 6 of
the VIC068’s interprocessor communications register 7. The
VMEbus master can then reprogram the entire program
memory space. Once that operation is complete, the control-
ler can use the interprocessor communications register 7 to
release the reset and hold state. The board comes up running
the newly installed program.

Take care when decoding SLSEL0, SLSEL1, and IFCSEL.
The VIC068’s operation is undefined when more that one of
these inputs is active simultaneously.

Decoding for Supervisor/User Mode
You can use the VMEbus AM2 signal to select user (AM2
Low) or supervisor (AM2 High) modes. The AM2 input is used
as part of the slave-select decoding shown in Figure 3.
Dealing with A24 and A16 Slave Accesses
Regardless of the access address size, the 74FCT543 ad-
dress buffer outputs are enabled. Typically, the backplane
pulls unused VMEbus address lines High passively, but most
masters drive these lines regardless of the bus-cycle-address
size. If this is not desirable, control the output-enable signals
with the upper address line buffers using the VMEbus ad-
dress modifiers. Table 1 illustrates how to use AM5 and AM4
to determine the bus-cycle-address size.

You can derive individual enables for each of the VMEbus
address latches by ANDing one or both of these address
modifiers with the VIC068A LAEN (local-address enable) sig-
nal; modify both if operating in an A32 system.

Remember to provide a stable level for the local-address lines
because nothing drives them during VMEbus accesses. You
can ensure a stable level using 4.7Ω pull-up or pull-down re-
sistors on the local-bus A31–A16 lines. The local-bus address
buffers can be set to the desired address state and enabled
with the same latch-enable signals.

Dual-Porting Local Memory
The PAL specification in Figure 3 generates a signal called
VIC_CYCLE than can serve as part of the local-address de-
coding to re-map local memory for dual-porting on the VME-
bus. This approach allows memory placement at a VMEbus
address independent of the local address.

Interrupts
The VIC068A interrupt structure is very versatile. One of the
most useful features is the ability to redefine interrupt levels,
and thus priorities, under normal program control. The
VIC068A supports all seven levels of VMEbus interrupt as
well as the seven local-interrupt levels. Interrupts are also
available to notify the 68020 of VMEbus status and error con-
ditions.

Figure 3 shows how to decode the 68020 interrupt acknowl-
edge bus cycle to generate the VIC068A FCIACK input. You
can omit A19-A16 from the equation if you do not use break-
points, a memory management unit (MMU), or a coprocessor
(68881/68882).

Using LIACK0
The LIACK0 output is typically connected to the 68020 AVEC
input to initiate autovectoring of interrupts to which the
VIC068A has not been programmed to respond. You can also
use LIACK0 with the IPL(2–0) outputs to generate inter-
rupt-acknowledge signals to other 680x0-compatible inter-
rupting devices.

LIRQ7–1 Inputs
The LIRQ7–1 inputs are the interrupt request inputs to the
VIC068. The control register for each input allows you to de-
termine the input’s polarity (high/low) and sensitivity (level or
edge). The control register also allows you to define whether
the VIC068A supplies the vector during interrupt acknowl-
edge cycles or asserts LIACKO (local-interrupt acknowledge
out), sets the level of interrupt the 68020 sees on IPL2–0, and
enables or disables the interrupt. You do not need to termi-
nate these inputs if you leave them unconnected, but you
must pull them up externally if they are used.

The local interrupts (IPL2–0) are grouped and have a com-
mon vector base register ($57). This vector base is added to
the encoded interrupt level programmed in each of the inter-
rupt control registers to supply a unique vector to the 68020
for each interrupt input.

LIRQ2 is a special case because it can be used as an inter-
rupt clock tick timer. You enable the timer through bits 2 and
3 of slave-select control register 0($C3). When enabled,
LIRQ2 becomes the timer output, and the local-interrupt con-
trol register 2 ($2B) becomes the timer’s interrupt-control reg-
ister. The timer’s periodic interrupt can be set to 50, 100, or
1000 Hz. If you plan on using the tick timer, do not connect
the external interrupts to LIRQ2 because this pin becomes an
output.

Table 1. Determining Bus-Cycle-Address Size.

AM5 AM4 Cycle

H H A24 Access

H L A16 Access

L L A32 Access

